Deep Learning for Object Saliency Detection and Image Segmentation

نویسندگان

  • Hengyue Pan
  • Bo Wang
  • Hui Jiang
چکیده

In this paper, we propose several novel deep learning methods for object saliency detection based on the powerful convolutional neural networks. In our approach, we use a gradient descent method to iteratively modify an input image based on the pixel-wise gradients to reduce a cost function measuring the class-specific objectness of the image. The pixel-wise gradients can be efficiently computed using the back-propagation algorithm. The discrepancy between the modified image and the original one may be used as a saliency map for the image. Moreover, we have further proposed several new training methods to learn saliency-specific convolutional nets for object saliency detection, in order to leverage the available pixel-wise segmentation information. Our methods are extremely computationally efficient (processing 20-40 images per second in one GPU). In this work, we use the computed saliency maps for image segmentation. Experimental results on two benchmark tasks, namely Microsoft COCO and Pascal VOC 2012, have shown that our proposed methods can generate high-quality salience maps, clearly outperforming many existing methods. In particular, our approaches excel in handling many difficult images, which contain complex background, highly-variable salient objects, multiple objects, and/or very small salient objects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compressed-Sampling-Based Image Saliency Detection in the Wavelet Domain

When watching natural scenes, an overwhelming amount of information is delivered to the Human Visual System (HVS). The optic nerve is estimated to receive around 108 bits of information a second. This large amount of information can’t be processed right away through our neural system. Visual attention mechanism enables HVS to spend neural resources efficiently, only on the selected parts of the...

متن کامل

Co-salient Object Detection Based on Deep Saliency Networks and Seed Propagation over an Integrated Graph

This paper presents a co-salient object detection method to find common salient regions in a set of images. We utilize deep saliency networks to transfer co-saliency prior knowledge and better capture high-level semantic information, and the resulting initial co-saliency maps are enhanced by seed propagation steps over an integrated graph. The deep saliency networks are trained in a supervised ...

متن کامل

A Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images

Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...

متن کامل

Saliency Detection by Selective Strategy for Salient Object Segmentation

Saliency detection is useful for many computer vision tasks including content-based image retrieval, segmentation, and object detection. However, methods on saliency detection are usually greatly affected by factors like features and segmentation results. We propose a novel selective segmentation-based saliency detection model to decrease the side effects caused by these factors. After extracti...

متن کامل

Deeply Supervised 3D Recurrent FCN for Salient Object Detection in Videos

This paper presents a novel end-to-end 3D fully convolutional network for salient object detection in videos. The proposed network uses 3D filters in the spatiotemporal domain to directly learn both spatial and temporal information to have 3D deep features, and transfers the 3D deep features to pixel-level saliency prediction, outputting saliency voxels. In our network, we combine the refinemen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1505.01173  شماره 

صفحات  -

تاریخ انتشار 2015